

Gender Dimensions in Practise of EU-funded Projects

ARISE and the European Stroke Network (ESN)

Affording Recovery in Stroke

16th Nov 2011, Wien

Christian Nolte Department Neurology Center for Stroke Research Charite, Berlin, Germany

ARISE and the European Stroke Network (ESN)

29 partners from 13 countries

Aims and Scope:

Developing successful strategies for brain protection and repair

therefore requires a joint effort of experts on basic neuroscience, vascular biology, neuroimmunology, neuroprotection, neuroregeneration, drug delivery, and clinical stroke neurology

Future impact of stroke on society

Changes in main causes of death worldwide 2005: 5.8 million deaths, 2030: 7.4 million deaths

2005 Disease or injury

Ischaemic heart disease

Cerebrovascular disease

Lower respiratory infections

Chronic obstructive pulmonary disease

HIV/ AIDS

Perinatal conditions

Diarrheal diseases

Tuberculosis

Trachea, bronchus and lung cancers

Road traffic accidents

2030* Disease or injury

- → 1 Ischaemic heart disease
- **2** Cerebrovascular disease
 - 3 HIV/ AIDS
 - 4 Chronic obstructive pulmonary disease
 - **5** Lower respiratory infections
 - 6 Diabetes mellitus
 - ' Trachea, bronchus, lung cancers
 - 8 Road traffic accidents
 - 9 Tuberculosis
 - 10 Perinatal conditions

Global causes for disability worldwide

Estimates of the WHO GBDS; percentage of DALYs lost due to the top ten diseases in men and women 15y and above

CHARITÉ UNIVERSITÄTSMEDIZIN BERLIN

Mackay J at al. The Atlas of Heart Disease and Stroke, WHO 2004

Gender and Stroke

Sex and Gender differences exist in the...

... incidence ... risk factors ...etiology ... treatment ...outcome

from stroke

Turtzo LC and McCullough LD. Cerebrovasc Dis 2008; 26:462-474

=> Cumulative incidence per year ca. 200/ 100.000 inhabitans

Incidence of stroke in Europe

European Stroke Registries Collaboration, 2004-2006

Annual stroke incidence rate and 95% CI per 100000 population adjusted to the European population for males (M) and females (F) the line represents the mean annual incidence rate adjusted to the European population for all centers for men for women

Gender specific variations in risk factors

BIOMED II Stroke Project, 22 hospitals from 7 European countries, 1993-1994

Variable	Males (n=2239)	Females (n=2260)	Р
Mean±SD Age, y	69.2±12.1	74.5±12.5	<0.001
Living at home alone	20.6%	36.1%	<0.001
Institutionalized	3.7%	7.9%	<0.001
Atrial fibrillation	15.2%	20.8%	<0.001
Hypertension	46.7%	50.7%	0.007
Diabetes	20.5%	21.3%	0.536
Current or previous smoking	57.3%	18.4%	<0.001
Alcohol intake	47.9%	21.1%	<0.001
Previous myocardial infarction	14.0%	8.0%	<0.001
Previous transient ischemic attack	13.4%	11.7%	0.084
Antihypertensive therapy	37.4%	45.1%	<0.001
Anticoagulant therapy	4.0%	3.8%	0.747
Antiplatelet therapy	20.4%	16.8%	0.003
Prestroke Rankin Score (2-5)	22.9%	31.7%	<0.001
CHARITÉ UNIVERSITÄTSMEDIZIN BERLIN		Di Carlo A et a	al. Stroke 2003

Gender Differences in Acute Ischemic Stroke Etiology, Stroke Patterns and Response to Thrombolysis

Alex Förster, MD; Achim Gass, MD; Rolf Kern, MD; Marc E. Wolf, MD; Caroline Ottomeyer, MD; Katrin Zohsel, PsyD; Michael Hennerici, MD; Kristina Szabo, MD

Outcome- 3 months after stroke

Riks-Stroke Register Sweden, 1872 men & 2483 women, 2006

Outcome	Sex	Proportion (%)	Age- adjusted OR	95% CI
90-day case fatality	Men	15.2		
	Women	20.2	1.080	1.008-1.158
Institutional living	Men	11.6		
	Women	14.5	(1.127)	1.016-1.250
Dependent in activities of daily	Men	19.0		
living	Women	23.9	1.079	0.995-1.170
Speech difficulties	Men	24.3		
	Women	25.4	1.006	0.936-1.082
Self-reported depression	Men	11.0		
	Women	15.4	1.490	1.357-1.637
Self-reported bad health status	Men	18.0		
	Women	21.9	(1.194)	1.103-1.293

Treatment

Aspirin in primary prevention

Women's Health Study: Ridker et al,. NEJM 2005; 352:1293ff

CHARITÉ UNIVERSITÄTSMEDIZIN BERLIN Physicians Health Study NEJM 1989;321:129ff

Articles

Prevention of disabling and fatal strokes by successful carotid endarterectomy in patients without recent neurological symptoms: randomised controlled trial

MRC Asymptomatic Carotid Surgery Trial (ACST) Collaborative Group*

Lancet 2004; 363: 1491-502

-3120 patiens with asymptomatic ICA stenosis $\geq 70\%$ -perioperative morbidity and mortality : 3,1%

NNT for Stroke

NNT 90

men women NNT 59 NNT 125

The sex of the patient is one potential risk factor

Most common hypotheses are related to steroid hormones, particularly oestrogen.

 Mouse models of ischaemic stroke show sex differences in stroke volumes:

- females have smaller stroke volumes than males
- ovariectomised females have similar stroke volumes than males
- ovariectomised females given hormone replacement therapy have similar volumes as intact females

 \rightarrow Protective role of oestrogens?

Reeves MJ et al. Lancet Neurol 2008

Reduction of prehospital delays by a population-based intervention

Prehospital time in intervention and control group in men and women. Data are given as median values with 25th and 75th percentiles.

Conclusions: The population-based intervention was effective in reducing prehospital delays in women but not in men.

Process of implementing gender equality has not been an issue so far

Gender Research in Stroke is still dominated by men

Female participation within ESN

Anna Planas (Barcelona, ES) Stroke Immunology

Nancy Rothwell (Manchester, UK) Biomarkers

Lydia Sorokin (Münster, D) Immunology

Britta Engelhardt (Bern, CH) Immunology

Elisabetta Dejana (Milano, I) Angiogenesis

5 Project Leaders out of 29

ESN / ARISE:

WHO?

gender mainstreamaing has not been a big issue so far

female participation is present

gender mainstreaming might be a chance to further improve networking and output

(WHAT and HOW)

Sex and Gender differences in stroke are present at many aspects of STROKE and are looked at within ESN

The reasons for the differences are multifactorial (age, risk factors, societal)

(WHO)

Gender Mainstreaming has not been an issue within the ESN/ARISE so far

CHARITÉ CAMPUS BENJAMIN FRANKLIN

LANGZEITBELICHTUNG Peter lüdemann

Costs for medical care of ischemic stroke

	Men		Women		Total	
Time period	cases	billions	cases	billions	cases	billions
2006-2010	331,000	13.8	425,000	16.1	756,000	29.9
2006-2015	701,000	27.1	880,000	30.9	1,581,000	58.0
2006-2020	1,108,000	39.7	1,367,000	44.6	2,475,000	84.3
2006-2025	1,547,000	51.5	1,883,000	57.1	3,430,000	108,6