

European Research Council

ERC Grant Schemes Guide for Peer Reviewers

Applicable to the ERC Starting Grants

15 May 2007

The guide is published by the ERC Scientific Council on http://erc.europa.eu

European Commission FP7 Specific Programme IDEAS

CONTENTS

1. INTRODUCTION
2. DOMAIN AND PANEL STRUCTURE
3. PANEL CHAIRS, PANEL MEMBERS, PANEL EVALUATORS, AND REFEREES4
4. THE APPROACH TO INTER-DISCIPLINARY PROPOSALS
5. DISTRIBUTION OF BUDGET: MAIN PRINCIPLES6
6. DETAILS OF PANEL BUDGETS7
7. CONFLICT OF INTEREST9
8. THE INDIVIDUAL REVIEWS9
9. THE CRITERIA11
10. PANEL MEETINGS AND PREPARATION11
11. FEEDBACK TO APPLICANTS12
12. INTERVIEWS WITH PRINCIPAL INVESTIGATORS13
13. THE ROLE OF DELEGATES OF THE SCIENTIFIC COUNCIL14
14. THE ROLE OF INDEPENDENT OBSERVERS14
ANNEX 1: THE OVERVIEW OF THE EVALUATION PROCESS
ANNEX 2: ERC STARTING GRANTS: PEER REVIEW PANEL STRUCTURE16
ANNEX 3: CONFLICT OF INTEREST IN ERC PEER REVIEW EVALUATIONS25
ANNEX 4: SAMPLE OF AN EVALUATION REPORT26

1. Introduction

The selection of scientific and scholarly proposals for funding by the ERC is based strictly on peer review with excellence as the single criterion. ERC uses a typical panel-based system, in which panels of high-level scientists and/or scholars make decisions either autonomously, or based on the findings of specialists external to the panel - the referees.

The "Rules"

The ERC Scientific Council (ERC-ScC or ScC) has established and agreed a document, adopted by the Commission as a legal document, namely the "Rules on proposal submission, evaluation and award procedures relevant to the Ideas Specific Programme" ("Rules"). This document defines number of high-level requirements on the processes put into operation by the ERC.

The Work-Programme

The ERC-ScC has also established and agreed the **Work-Programme (WP)**, which was adopted by the Commission as a legal document. The WP in particular, defines the parameters of the Call for Proposals. More specifically, it defines the call deadline(s), the call budget, it stipulates that a two-stage peer review procedure will be applied, it sets the framework for budgetary decisions, and it specifies the review criteria.

This document

This document complements these legal texts. It specifies in more detail the review process and its inputs and outputs, and it defines the responsibilities of the participants in the process. It detailed the "Rules" in a number of important issues, such as: a clarification of the methodology as regards inter-disciplinary proposals; practical guidelines for the management of conflict of interest; and a clarification on budgetary inter-panel (see comments of P. Haertwich) and inter-domain issues.

2. Domain and Panel structure

The ERC has a mandate to implement a bottom-up, investigator-driven approach to funding. Consequently, the principal objective of the peer review system is to select the best science, independent of its discipline and independent of the particularities of the review panel structure. The panel structure is, in essence, no more than an operational instrument.

In this context, the ERC has established a panel structure consisting of 20 panel titles, grouped in three domains, covering the entire spectrum of science and scholarship in the remit of the ERC. In defining the structure, a forward-looking approach was taken and narrow disciplinary definitions have been avoided. The treatment of interdisciplinary proposals is "mainstreamed", so that there is no special interdisciplinary panel (see also the section on inter-disciplinarity).

The 20 panels are grouped in three domains:

- Social sciences and Humanities (SH)
- Life sciences (LS)
- Physical and Engineering Sciences (PE)

The panel structure, with corresponding indicative keywords, is presented in Annex 2.

3. Panel chairs, panel members, panel evaluators, and referees

The panels

An ERC panel, for a particular review session, will consist of a chairperson plus approximately 10 members, and a certain number of panel evaluators in due proportion to the number of applications assigned to a panel. The chair, the members, and the panel evaluators have been selected by the ERC-ScC on the basis of their excellent scientific reputation. They make a significant commitment of their time to the ERC review process.

Panel chairs and members perform the following tasks:

- 1. Familiarisation with all proposals in their panel in preparation for the panel meetings
- 2. Individual review of a subset of those proposals by electronic means in preparation for the panel meetings
- 3. Attendance and participation to the panel meetings
- Panel chairs have additional tasks:
 - 1. Chairing the panel meetings
 - 2. Assignment of proposals for individual review, in coordination with the ERC
 - 3. Participation in a meeting of panel chairs to consolidate the results of different panels. Panel chairs can deputise this task to one of the members.

Panel evaluators make their contribution by a remote review of a subset of proposals allocated to their panel. They do not attend the panel meetings.

1. The name of the panel chair is publicly available, specified by panel. The names of panel members are published in the form of a consolidated alphabetical list. This information is published before the deadline of the Call. The list of panel evaluators will be published at the end of each year. According to article 17§5 of the EC rules for participation and the ERC rules for proposal submission (experts assigned to individual proposals), it is foreseen that the names of the experts that have assisting the Commission are published once a year. What is the justification to have derogation for the panel chair and for the panel members which have to familiar themselves with the proposals and carry out individual reviews of a subset of proposals?

The referees

In addition to the panels, the ERC works with referees, scientists who bring to bear the necessary *specialised* expertise. Referees work remotely and deliver their individual reviews by electronic means. Because of the specialised nature of the work, the

demands on the time of individual referees will be comparatively smaller (of the order of a day). The names of the referees will be made public at the end of each year.

The assignment of referees to proposals is carried out under the responsibility of the panel chairs. There is no limitation on the participation of any member of the international scientific community to act as referee, subject to the approval or accreditation of the person in question by the ScC.

The appointment letters

In all cases, the relationship between the ERC DIS and the reviewers is defined by a written and signed agreement, the Appointment Letter. Signature of this agreement by the reviewer indicates acceptance of the conditions regarding confidentiality, conflict of interest, and use of personal data by the ERC. ERC DIS can not make available proposals to a reviewer who has not been officially appointed (see ERC model of appointment letter in the ERC rules for proposal submission)..

4. The approach to inter-disciplinary proposals

Inter-disciplinarity versus cross-panel

The broad definition of the panels allows many inter-disciplinary proposals to be treated within a single panel (mainstreaming of inter-disciplinarity). However, the scientific subject matter of some proposals will cross panel boundaries. The key question is thus not whether a proposal is inter-disciplinary, but whether the full expertise required for its review is available in one panel.

Inter-disciplinarity of the research

When dealing with inter-disciplinary proposals, it is important to point out that the key element, as far as peer review is concerned, lies in the inter-disciplinarity of the proposed activities themselves, rather than in the possible inter-disciplinary use of its results. This view on inter-disciplinarity, while slightly restrictive, facilitates allocation of proposals and their treatment by panels.

Making the panels responsible

The responsibility to ensure that inter-disciplinary proposals receive equal and fair treatment therefore rests fundamentally with the panels to which they are allocated. (We note that it would not be logical to allocate certain proposals to multiple panels, as this would introduce unequal treatment as a function of panel structure).

The structure of the evaluation criteria, defined in the WP, allows the panels to fulfil this responsibility. In the first stage of the review panels can come to clear decisions on the potential of the Principal Investigator, and the quality of the research proposed (ground-breaking nature, potential impact and feasibility of methodology), even while recognising that certain scientific aspects of the proposals may not be fully covered by the panel's specialities. (Note that the same may be true for proposals that fall entirely within the panel). The panel therefore plays a somewhat generalist role.

The contribution from remote reviews

In the second stage of the review, proposals will be assigned to referees – working remotely – to take advantage of the best spectrum of specialised expertise. Their reviews will then form a basis for the panel discussions.

This differs from the role of the first stage panel evaluators who are assigned to a specific panel and whose remote reviews will be also used for the panel discussions. As it is the case for panel members panel evaluators contribute to the generalist role of the panels.

Monitoring

Meanwhile, ERC is putting in place provisions to allow review and fine-tuning of the approach in the future, in particular by identifying and tracking of inter-disciplinary proposals.

5. Distribution of budget: main principles

Initial allocation to the domains

In the Work Programme (WP), the ERC-ScC has defined, in the Work-Programme (WP), a distribution of the total call budget between the three domains (PE 45%, LS 40%, SH 15%). In addition, the ERC-ScC has decided to keep a fraction of the budget, up to 20%, **as a reserve budget**. This mechanism results in a **nominal budget** per domain (45% of 80%, 40% of 80%, 15% of 80% respectively).See comments of Peter Haertwich.

Allocation and arbitrage between panels within each domain

Within each domain, the distribution of budget between panels will, in the first instance be based on demand, where the demand of a panel is defined in terms of the total requested budget of the proposals allocated to that panel. At the end of the review process, this will be subject to a discussion between representatives of the panels concerned, with due attention paid to the quality of the proposals. These decisions are part of the peer review process, and are taken by the peer reviewers in a fully autonomous and independent way. Each domain will, therefore, produce a list of proposals recommended for funding (within its budget allocation) and a domain-reserve list.

Arbitration between the domains

Subsequent to the peer review the ScC will allocate the reserved budget to the domains, on the basis of a discussion which will take into account several factors, such as the results per domain, quality of proposals, and inter-disciplinarity. This allocation by the ScC is a strategic decision, which is taken subsequent to the peer review process and is not part of it. In particular, these ScC decisions will not affect the ranking of individual proposals on any of the lists of recommended and reserve proposals.

6. Details of panel budgets

For stage-1: from nominal to virtual panel budget

The WP defines that the success-rate of second stage proposals should be a factor 2. In that context, in the first stage, each panel will be allocated a **virtual budget**, which is the appropriate multiple of its nominal budget. In stage-1, there is no reserve.

In stage-1: decisions are binary

In stage-1, the panel thus makes binary decisions:

- 1. The list of proposals that should go forward to the second stage, up to the virtual budget. Their final scores (allocated by the panel) must be above the success threshold.
- 2. Proposals ranked outside the virtual budget must be rejected. As a consequence, their final scores must fall below the success threshold.

In stage-2: a retained, reserve and rejection list per panel

In the second stage, panels will decide between "fundable" and "not-fundable" proposals, and decide on a ranking of the fundable ones. There are three lists:

 The panel-retained list of fundable proposals ranked inside the nominal budget. These will be subject to a selection procedure by the ScC and subsequent granting procedures by ERC DIS. Their final scores (given by the panel) must be (well) above the success threshold.

The panel-reserve list of fundable proposals ranked outside the nominal budget. These are considered as reserve. These proposals on the panel-reserve list will be subject to the procedure outlined below. Their final scores must be above the success threshold.

2. Not-fundable proposals will be subject of a rejection procedure by the ERC DIS Their final scores must be below the success threshold.

Consolidation of the panel results into domain results

The panel-reserve lists for all of the panels within a domain must be consolidated into a single domain-reserve list. This consolidation is the responsibility of the panel chairs or their deputies, who will work in order to create a consolidated ranking in accordance with the evaluation criteria, and pay particular attention to inter-disciplinary and cross-panel calibration issues. A dedicated meeting of panel chairs will be organised after the last panel meeting.

The case of insufficient good proposals

In cases where a panel does not have sufficient high-quality proposals to reach its nominal budget, any remaining budget will be transferred to the **reserve budget**.

The ScC strategic decision at domain level

The three domain-reserve lists will then be forwarded to the ScC, in order for the ScC to make its decisions about the reserve budget. ScC reserve-budget allocation to a domain-reserve list results in the start of the granting procedures for a number of proposals, strictly following descending ranking order.

7. Conflict of Interest

Peer-reviewers should not be put in a situation in which their impartiality might be questioned, or where the suspicion could arise that decisions are affected by elements

that lie outside the scope of the review. To that effect, the ERC DIS has formulated a clear set of rules pertaining to conflict of interest (Col) in the "Rules" (see Annex 3 "Conflict of interest in research evaluation"). These rules are incorporated in the Appointment Letter, in the form of the need for disclosure by the reviewer of any actual (disqualifying) or potential conflict of interest regarding the proposals. In the "potential" case, ERC DIS will make decision whether the situation in question constitutes an actual Col - or no Col.

No individual assessments under Col and no participation in meetings

No reviewer shall make an individual review of a proposal while under a Col with it. To that effect, ERC DIS shall avoid making conflictual assignments of proposals to reviewers, on the basis of the information available. Beyond the steps taken by the ERC DIS, reviewers are bound to disclose any Cols and will not participate when an application that places them in Col is being evaluated.

Col and panel meetings

- Any Cols must be declared prior to, or in the beginning of, the panel meeting, to all meeting participants.
- A panel member will refrain from any attempt to influence the result of the review of any proposal with which he / she has a Col. In particular, the panel member will not participate in the discussion, or in any voting, related to that proposal.
- Pls of submitted proposals as well as their team members if known by name will be excluded from the participation in panels.

8. The individual reviews

Individual reviews are carried out prior to panel meetings. Panel members, panel evaluators and referees can participate in the individual review step.

Minimum requirements

The Rules stipulate that each proposal shall be subject to at least 3 individual reviews. In practice, ERC will use a target of at least 4. Barring unforeseen circumstances, at least 1 panel member who will be present in the subsequent panel meeting will carry out an individual review for each proposal. In practice, the target will be 2.

The interpretation of "individual"

During the individual review step, there shall be no discussions on the proposals concerned between the reviewers.

Marks and comments

Individual reviewing consists of:

- Awarding marks (including yes/no decisions) for each of the review criteria.
- Providing a succinct but substantial explanatory comment for each mark.

The importance of marks and comments

Both marks and comments are critically important:

- The individual review marks determine the relative position on the list that is the starting point for the panel discussions.
- The comments will be reproduced –verbatim- in the feedback to applicants.

The range of the marks

Marks range from 0 (missing information), 1 (very poor) ... to 5 (excellent). Marks are awarded in integers or halves. Reviewers are encouraged to reserve the extremes at the scale (0,1,...,5) for exceptionally bad / good proposals.

In all cases, reviewers are requested to stick strictly to the review criteria.

Once marks added and threshold 8 applied, a list is obtained of proposals to retain and another list is obtained of non-fundable proposals to reject.

The nature of the comments

Comments should be succinct but substantial. They should also be impeccably polite The comments will be reproduced in the feedback to applicants.

Comments should take the form of a statement of key strengths and key weaknesses, in the light of the criteria. For a first stage proposal, they would typically be a few sentences long.

Reviewers are encouraged to observe the following additional guidelines:

- Please pay attention to the rules on conflict of interest and refrain from reviewing any proposal for which a Col exists.
- Avoid comments that give a description or a summary of the proposal.
- Avoid the use of the first person or equivalent: "I think..." or "This reviewer finds...".
- Always use dispassionate and analytical language: avoid dismissive statements about either the PI, the proposed science, or the scientific field concerned.

Under the Rules, the ERC is obliged to obtain a signed original version of the individual reviews. This can consist of a single signature on multiple reviews.

9. The criteria

The criteria express the objectives of the ERC activity at the level of the review. They are, therefore, defined in the Work Programme. There are two types of criteria:

- Eligibility criteria.
- Review criteria.

Eligibility criteria

Eligibility criteria are simple, factual and legally-binding criteria. Their interpretation does not involve scientific judgement. Hence, eligibility is not part of the review process.

Instead, it is carried out in parallel by the ERC DIS. Most ineligible proposals will be identified prior to the review. However, in some cases proposals will be withdrawn from the review as ineligibility can only be confirmed with some delay.

Review criteria

The review criteria are at the core of the review process. All judgement on proposals must be made against the criteria, and the criteria alone.

The review criteria and their interpretation are described in the WP. Insofar as any further clarification is required, this will be done in public and before the call deadline.

10. Panel meetings and preparation

Autonomy of panel chairs

Panel chairs have a high degree of autonomy in the conduct of their meetings: which proposals to discuss in detail, in which order, when to resort to voting and how to vote, etcetera. The conduct of the meetings will also be influenced by the numbers of proposals to be reviewed by the panel.

The efficiency of meetings and preparation

The ERC attaches great importance to the principle that panel meetings should be short and efficient. For that reason, preparatory work is carried out by electronic means in advance of the meeting:

- 1. Panel members familiarise themselves with all proposals in their panel, in order to be able to make high-quality decisions
- 2. Panel members and panel evaluators carry out individual reviews of a subset of proposals
- 3. Typically only in the second stage, referees also contribute individual reviews.

The prior individual review step increases efficiency in two ways:

- 1. To create a preliminary ranking, allowing panel discussions to focus their attention on those proposals that merit substantial discussion, and allowing an early elimination of low-ranked proposals.
- 2. To gather elements of the feedback to applicants. In particular for the low ranked proposals, the comments obtained by individual review may sufficiently capture the substantial reasons for the rejection, and subject to panel agreement no further comments by the panel are necessary.

Methodologies for decision-making and ranking

Starting from the preliminary ranking, panels would typically go through a process of successive elimination steps, where the depth of discussion increases as the number of proposals in contention is reduced. For each eliminated proposal, panels will either decide to adopt the average mark originating from the individual reviews, or to assign a different mark. They will also give an appropriate panel comment (see feedback to applicants section).

The possible use of a voting system

In the later stages of this process, panels may expedite their decision-making process by the use of a voting system, such as a modified Borda count. In such a system, each panel member will distribute a number of votes to his / her preferred proposals, and proposals would be ranked on the basis of the votes. A panel member can not vote for a proposal if under a Col, and an appropriate correction is applied. The voting shall be blind to avoid tactical behaviour; however, after voting is complete, individual votes are transparent to the panel. The results of such a vote need not be binding. The voting is to be considered mainly as an effective way to create a ranking based on a set of individual preferences.

Outputs of the panel meetings

The output of an individual panel meeting, to be completed at the end of the meeting, consists of the following elements:

- 1. The necessary lists of proposals, depending on the stage (see the panel budget section)
- 2. The feedback to applicants (see the relevant section)
- 3. A panel report

The panel report

In addition to the necessary lists of proposals, the panel report briefly documents the methodology followed by the panel. It also contains, as appropriate, reflections on issues such as the quality of proposals in relation to the budget and observations on inter-disciplinary proposals. It may contain recommendations to be taken into account by the ERC in future review sessions.

11. Feedback to applicants

Apart from the decisions on "fundability" of proposals and their ranking, the most important output of the panel meetings is the feedback to applicants. According to the "Rules", the ERC DIS will provide to each applicant an Evaluation Report (**ER**), which documents the results of the review, in terms of marks and comments (see Annex 4 for a sample ER). Especially in case of rejection, the ER needs to convey a credible explanation of the fate of the proposal. The principle applies that the ER will contain a documentation of all observations on the proposal, both from individual reviewers and from the panels.

In the first stage, no feedback to applicants will be given for successful proposals. In order to guarantee uniformity of treatment, these applicants will only receive a letter inviting the submission of the second stage proposal.

Elements of the ER

The ER of the ERC is comprised of three components:

- 1. The final decision of the panel
- 2. A comment by the panel, documenting the panel decision
- 3. The comments given by individual reviewers referees and panel members/evaluators prior to the panel meeting

The comments by individual reviewers

The comments by remote reviewers are included in the ER in principle as received. They may be subject to mild editing by the ERC – covering e.g. spelling, clarity, avoiding misleading recommendations. These comments may not necessarily be convergent – differences of opinion about the merits of a proposal are legitimate, and it is potentially useful for an applicant to be informed of the various views.

The panel comment

In many cases the comments by the individual reviewers provide a sufficient explanation of the fate of the proposal. In such cases, the panel comment will typically simply acknowledge the weaknesses or strengths pointed out by the individual reviewers. It will then not contain observations that substantially deviate from the view expressed by the individual reviewers.

In other cases, the panel may take a position that is different from what could be inferred from the comments of the individual reviewers. For example, if the panel discussion reveals an important weakness in a proposal the panel comment will document its reasons in a substantial comment.

In the first stage, a number of proposals of reasonable / good quality may be rejected for the reason of lack of virtual budget. Such proposals may typically have positive comments from individual reviewers; however they do not gather enough support from panel members when taking into account the budgetary constraint. In such cases, the panel comments may be expressed in these terms.

12. Interviews with Principal Investigators

The review methodology for the ERC Starting Grant includes interviews with all PIs of second stage proposals. Panels have a significant degree of autonomy in carrying out the interviews. However, in the interest of equal and fair treatment, panels will be expected to follow a number of guidelines.

Minimum duration

All interviews by one panel should be of the same duration, and should not last less than 20 minutes. They should start with a 5 minute presentation by each interviewed PI providing an outline of the proposed research. There may be variations in duration between panels, as a result of workload variations.

Use of sub-panels

For panels with smaller numbers of proposals, it may be possible for all panel members to attend all interviews. For panels with higher workloads, the tasks may be split between sub-panels. Such sub-panels should consist of at least four panel members at any time. In order to maintain coherence between sub-panels, panel members should rotate between them on a regular basis.

Interviews must address the review criteria. They will be structured around a set of leading questions which are identical for each applicant.

The results of the interviews

Panels or sub-panels will express their appreciation of the applicant in the form of a score (i.e. the interview is not a yes / no factor). In the subsequent panel meeting, panels will take into account the results of the interviews alongside the other elements; the individual review and the preliminary ranking.

13. The role of delegates of the Scientific Council

The ERC-ScC may delegate its members to attend panel meetings. The role of the ScC delegates relates to ensuring and promoting coherence of decision-making between panels, to identifying best practices and to gathering information for future reviews of the procedures by the ScC.

In conformity with the mandate of the ScC to carry out the scientific governance of the ERC, and in line with the strategic nature of ScC decisions foreseen in the WP, ScC delegates are not expected to influence the results of the review process.

14. The role of Independent Observers

Under the Rules, the ERC has an obligation to invite Independent Observers to observe its review sessions at regular intervals. The Independent Observers are independent of the ERC and of the ScC, as it is stated in the ERC rules for proposal submission.

Annex 1: The overview of the evaluation process

Stage 1

Stage 2

Annex 2: ERC Starting Grants: Peer Review Panel Structure

Social Sciences and Humanities

Panel SH1 - Individuals and organisations: economics, management, demography, geography, urban and environmental studies

- SH1_1 Macroeconomics, growth, development, business cycles
- SH1_2 Microeconomics, institutional economics
- SH1_3 Environment, sustainability, social and industrial ecology
- SH1_4 Econometrics, statistical methods
- SH1_5 Financial markets, banking and corporate finance
- SH1_6 Innovation, competitiveness, research and development
- SH1_7 Consumer behaviour, marketing
- SH1_8 Organization studies, strategy
- SH1_9 Human resource management, employment and earnings
- SH1_10 Public administration, public economics
- SH1_11 Income distribution, poverty
- SH1_12 International trade, economic geography
- SH1_13 Human and social geography, spatial and regional planning
- SH1_14 Population dynamics, health and population
- SH1_15 Urbanization, urban planning, transport studies

Panel SH2 - Institutions, behaviour, values and beliefs: anthropology, sociology, political science, law, communication, social studies of science and technology

- SH2_1 Social structure, inequalities, mobility
- SH2_2 Communication networks, media studies, information society
- SH2_3 Ageing, work, social policies
- SH2_4 Globalization, migration, interethnic relations
- SH2_5 Identity, community, nation, religion
- SH2_6 Legal systems, human rights, constitutions
- SH2_7 Kinship, cultural dimensions of classification and cognition
- SH2_8 Myth, ritual, symbolic representations
- SH2_9 Ethnography
- SH2_10 Political systems, legitimacy, political support
- SH2_11 Global and transnational governance, civic participation
- SH2_12 Transformation of societies, democratization, social movements
- SH2_13 Scientific knowledge production, politics of knowledge
- SH2_14 Technosciences and societies, mutual engagement
- SH2_15 History of science and technology

Panel SH3 - The human mind and its complexity: cognition, linguistics, psychology, philosophy and education

- SH3_1 Evolution of mind and cognitive functions
- SH3_2 Formal, cognitive and functional linguistics
- SH3_3 Neuro-, psycho-, sociolinguistics
- SH3_4 Linguistic typology, comparative and historical linguistics
- SH3_5 Human life-span development
- SH3_6 Neuro and cognitive psychology
- SH3_7 Clinical and experimental psychology
- SH3_8 Education
- SH3_9 Philosophy
- SH3_10 Epistemology, logic
- SH3_11 Ethics and morality

Panel SH4 - Cultures and cultural diversity: literature, visual and performing arts, music and cultural studies

- SH4_1 Classics, classical literature, classical art
- SH4_2 Literature, literary theory, analysis and criticism
- SH4_3 Comparative literature
- SH4_4 Textual philology and textual criticism
- SH4_5 Visual arts
- SH4_6 Performing arts
- SH4_7 Museums and exhibitions
- SH4_8 Music and musicology
- SH4_9 Cultural studies, cultural diversity
- SH4_10 Ethnic and postcolonial studies
- SH4_11 Cultural heritage

Panel SH5 - The study of the past and of cultural artefacts: memory, history and archaeology

- SH5_1 Modern and contemporary history
- SH5_2 Ancient history, ancient cultures
- SH5_3 Medieval history
- SH5_4 National, transregional and transnational history
- SH5_5 Entangled histories, global history
- SH5_6 Social, economic, cultural, political history
- SH5_7 Historiography
- SH5_8 Archaeology, prehistory, protohistory
- SH5_9 Collective memories and identities, lieux de memoire
- SH5_10 History of art and architecture
- SH5_11 History of ideas, intellectual history

Mathematics, physical sciences, information and communication, engineering, universe and earth sciences

Panel PE1 - Mathematical foundations: all areas of mathematics, pure and applied, plus mathematical aspects of theoretical computer science, and mathematical physics

- PE1_1 Foundations of mathematics and logic
- PE1_2 Algorithms
- PE1_3 Number theory
- PE1_4 Combinatorial analysis
- PE1_5 Algebra
- PE1_6 Geometry
- PE1_7 Topology
- PE1_8 Analysis
- PE1_9 Computational mathematics
- PE1_10 Theoretical computer science
- PE1_11 Numerical analysis
- PE1_12 Probability and statistics
- PE1_13 Applied mathematics
- PE1_14 Operations research
- PE1_15 Mathematical physics
- PE1_16 Other areas of mathematics

Panel PE2 - Fundamental constituents of matter: high energy, particle, nuclear, plasma, atomic, molecular, gas, and optical physics

- PE2_1 High energy physics
- PE2_2 Fundamental interactions and particles
- PE2_3 Particle physics
- PE2_4 Nuclear physics
- PE2_5 Gas and plasma physics
- PE2_6 Atomic, molecular physics
- PE2_7 Optics and quantum optics
- PE2_8 Relativity
- PE2_9 Classical physics
- PE2_10 Thermodynamics
- PE2_11 Non-linear physics
- PE2_12 General physics
- PE2_13 Metrology

Panel PE3 - Condensed matter in physics and chemistry: condensed matter (structure, electronic properties, fluids,...), statistical physics, nanosciences, reactions

- PE3_1 Biophysics
- PE3_2 Condensed matter and solid state physics
- PE3_3 Statistical physics
- PE3_4 Phase transitions
- PE3_5 Structural properties of materials
- PE3_6 Electronic properties of materials and transport
- PE3_7 Magnetism
- PE3_8 Superconductivity
- PE3_9 Semiconductors
- PE3_10 Material sciences (physics related)
- PE3_11 Nanosciences and nanotechnology (physics related)
- PE3_12 Reaction mechanisms
- PE3_13 Chemical reactions
- PE3_14 Reaction dynamics
- PE3_15 Theoretical and computational chemistry of condensed matter
- PE3_16 Chemical physics, physical chemistry of condensed matter
- PE3_17 Nanochemistry

Panel PE4 - Material and chemical sciences: material sciences, molecular architecture, chemical theory, analysis and synthesis (organic and inorganic), physical and environmental chemistry, method development

- PE4_1 Physical chemistry of molecules
- PE4_2 Environment chemistry
- PE4_3 Homogeneous and heterogeneous catalysis
- PE4_4 Spectroscopic and spectrometric techniques
- PE4_5 Molecular architecture
- PE4_6 Molecular chemistry
- PE4_7 Analytical chemistry
- PE4_8 Organic chemistry
- PE4_9 Inorganic chemistry
- PE4_10 Instrumental techniques
- PE4_11 Macromolecular chemistry, polymer chemistry
- PE4_12 Solid state chemistry
- PE4_13 Synthesis (organic and inorganic)
- PE4_14 Material science (chemistry related)
- PE4_15 Surface science
- PE4_16 Colloid chemistry
- PE4_17 Combinatorial chemistry
- PE4_18 Theoretical and computational chemistry of molecules
- PE4_19 Method development
- PE4_20 Supramolecular chemistry
- PE4_21 Chemistry of biological systems (biological chemistry)

Panel PE5 - Information and communication: informatics and information systems, computer science, scientific computing, communication technology, intelligent systems

- PE5_1 Computer architecture
- PE5_2 Database management
- PE5_3 Formal methods
- PE5_4 Graphics
- PE5_5 Human computer interaction and interface
- PE5_6 Informatics and information systems
- PE5_7 Theoretical computer science
- PE5_8 Intelligent systems
- PE5_9 Scientific Computing
- PE5_10 Modelling tools
- PE5_11 Multimedia
- PE5_12 Networks
- PE5_13 Parallel and Distributed Computing
- PE5_14 Robotics
- PE5_15 Signals, Speech and Image Processing
- PE5_16 Systems and software

Panel PE6 - Engineering sciences: electronics, product design, process design and control, construction methods, fluid and solid mechanics, energy systems, bio-engineering

- PE6_1 Aerospace engineering
- PE6_2 Biomedical engineering and technology
- PE6_3 Chemical engineering
- PE6_4 Civil engineering
- PE6_5 Control engineering
- PE6_6 Electrical and electronic engineering
- PE6_7 Computational engineering
- PE6_8 Fluid dynamics
- PE6_9 Energy systems
- PE6_10 Maritime engineering
- PE6_11 Microengineering
- PE6_12 Mechanical engineering
- PE6_13 Materials Engineering
- PE6_14 Nuclear engineering
- PE6_15 Process engineering
- PE6_16 Product design
- PE6_17 Simulation engineering and modelling
- PE6_18 Systems engineering

Panel PE7 - Universe science: astro-physics/chemistry/biology/geology; solar system; stellar, galactic and extragalactic astronomy, cosmology; space science, instrumentation

- PE7_1 Solar and interplanetary physics
- PE7_2 Planetary systems sciences
- PE7_3 Interstellar medium
- PE7_4 Formation of stars and planets
- PE7_5 Astrobiology
- PE7_6 Stars and stellar systems
- PE7_7 The Galaxy
- PE7_8 Formation and evolution of galaxies
- PE7_9 Clusters of galaxies and large scale structures
- PE7_10 High energy and particles astronomy X-rays, cosmic rays, gamma rays, neutrinos
- PE7_11 Relativistic Astrophysics
- PE7_12 Dark matter, dark energy
- PE7_13 Gravitational astronomy
- PE7_14 Cosmology
- PE7_15 Space Sciences
- PE7_16 Very large data bases: archiving, handling and analysis
- PE7_17 Instrumentation telescopes, detectors and techniques

Panel PE8 - Earth system science: physical geography, geology, geophysics, meteorology, oceanography, climatology, ecology, global environmental change, biogeochemical cycles, solar planets, natural resources management

- PE8_1 Atmospheric chemistry and aeronomy
- PE8_2 Meteorology and atmospheric sciences
- PE8_3 Climatology (incl. paleo-climatology), climate modeling
- PE8_4 Ecology, environmental chemistry, water, air and soil pollution
- PE8_5 Geography, geology, geochemistry
- PE8_6 Global environmental change
- PE8_7 Geophysics, seismology, volcanology
- PE8_8 Oceanography/marine sciences (physical, chemical, biological),
- PE8_9 Biogeochemistry
- PE8_10 Geophysics, geochemistry, mineralogy
- PE8_11 Solar planetology
- PE8_12 Petrology, sedimentology
- PE8_13 Physical geography
- PE8_14 Earth observations from space / remote sensing
- PE8_15 Geomagnetism, paleomagnetism
- PE8_16 Ozone and atmospheric composition
- PE8_17 Soil science, tectonics
- PE8_18 Waste disposal, water science

Life Sciences

Panel LS1 - Molecular, cellular and developmental biology: molecular biology, biochemistry, biophysics, structural biology, cell biology, cell physiology, signal transduction and pattern formation in plants and animals

- LS1_1 Molecular biology and interactions
- LS1_2 General biochemistry and metabolism
- LS1_3 Nucleic acid biosynthesis, modification and degradation
- LS1_4 RNA processing and modification
- LS1_5 Protein synthesis, modification and turnover
- LS1_6 Biophysics
- LS1_7 Structural biology (crystallography, NMR, EM)
- LS1_8 Morphology and functional imaging of cells
- LS1_9 Cell biology and molecular transport mechanisms
- LS1_10 Cell cycle and division
- LS1_11 Apoptosis
- LS1_12 Cell differentiation, physiology and dynamics
- LS1_13 Organelle biology
- LS1_14 Cell signalling and cellular interactions
- LS1_15 Signal transduction
- LS1_16 Development, developmental genetics, pattern formation and embryology

Panel LS2 - Genetics, genomics, bioinformatics and systems biology: molecular and cell genetics, genomics, transcriptomics, proteomics, metabolomics, bioinformatics, computational biology, biostatistics, biological modelling and simulation, systems biology

- LS2_1 Molecular genetics
- LS2_2 Epigenetics and gene regulation
- LS2_3 Quantitative genetics
- LS2_4 Cell genetics
- LS2_5 Comparative genetics
- LS2_6 Human genetics
- LS2_7 Reverse genetics and RNAi
- LS2_8 Genomics, comparative genomics, functional genomics
- LS2_9 Proteomics
- LS2_10 Transcriptomics
- LS2_11 Metabolomics
- LS2_12 Glycomics
- LS2_13 Bioinformatics
- LS2_14 Computational biology
- LS2_15 Biostatistics
- LS2_16 Systems biology
- LS2_17 Biological systems analysis, modelling and simulation

Panel LS3 - Organismic physiology, including infection and immunity: organogenesis, organ physiology, endocrinology, ageing, regeneration, metabolism, immunobiology, microbiology, virology, parasitology, toxicology

- LS3_1 Organ physiology
- LS3_2 Comparative physiology
- LS3_3 Endocrinology
- LS3_4 Ageing
- LS3_5 Metabolism, biological basis of metabolism related disorders
- LS3_6 Toxicology
- LS3_7 Parasite biology
- LS3_8 Microbiology, microbial genetics
- LS3_9 Virology, viral genetics
- LS3_10 Innate immunity
- LS3_11 Adaptive immunity
- LS3_12 Phagocytosis and cellular immunity
- LS3_13 Immunosignalling
- LS3_14 Immunological memory and tolerance
- LS3_15 Immunogenetics
- LS3_16 Biological basis of immunity related disorders

Panel LS4 -Neurosciences: neurobiology, neuroanatomy, neurophysiology, neurochemistry, neuropharmacology, neuroimaging, systems neuroscience, psychiatry

- LS4_1 Neurobiology
- LS4_2 Neuroanatomy
- LS4_3 Neurophysiology
- LS4_4 Neurochemistry and neuropharmacology
- LS4_5 Systems neuroscience
- LS4_6 Cognition
- LS4_7 Behaviour
- LS4_8 Brain and neuroimaging
- LS4_9 Biological basis of neural and psychiatric disorders

Panel LS5 - Evolutionary, population and environmental biology: evolution, ecology, animal behaviour, population biology, biodiversity, biogeography, marine biology, ecotoxicology

- LS5_1 Evolutionary biology, biological adaptation
- LS5_2 Molecular evolution
- LS5_3 Evolution and development
- LS5_4 Population biology, population dynamics, population genetics
- LS5_5 Ecology, environmental and <u>conservation</u> biology, biodiversity,
- ecotoxicology, marine biology, radiation biology
- LS5_6 Environment and health risks including radiation biology, environmental medicine and toxicology

Panel LS6 - Medical and health science research: aetiology, diagnosis and treatment of disease, public health, epidemiology, pharmacology, regenerative medicine, veterinary medicine, medical ethics

- LS6_1 Biological basis of non-communicable diseases, except for neural/psychiatric, immunity-related and metabolism-related disorders. E.g. cancer and cardiovascular diseases
- LS6_2 Diagnostics
- LS6_3 Therapies: drug therapies, gene therapy, surgery
- LS6_4 Stem cell biology, regenerative medicine
- LS6_5 Public health and epidemiology
- LS6_6 Pharmacology and pharmacogenomics
- LS6_7 Health services, health care research
- LS6_8 Veterinary medicine
- LS6_9 Ethics in medical and health sciences

Panel LS7 - Applied life sciences, biotechnology and bioengineering: agricultural, animal, fishery, forestry and food sciences; biotechnology, chemical biology, genetic engineering, synthetic biology, industrial biosciences; environmental biotechnology and remediation; bioethics

- LS7_1 <u>Genetic engineering</u>, transgenic organisms, recombinant proteins,
 - biosensors
- LS7_2 Synthetic biology and new bio-engineering concepts
- LS7_3 Chemical biology
- LS7_4 Agriculture and food: <u>animal husbandry</u>, <u>dairying</u>, livestock raising, crop production, soil biology and cultivation, applied plant biology
- LS7_5 Aquaculture, fisheries
- LS7_6 Forestry, biomass production
- LS7_7 Environmental biotechnology: bioremediation; biodegradation
- LS7_8 Industrial biotechnology: bioreactors, industrial microbiology
- LS7_9 Drug discovery, drug design
- LS7_10 Biofuels, biomimetics
- LS7_11 Biohazards, biological containment, biosafety, biosecurity
- LS7_12 Ethics in life sciences (other than medical and health sciences)

Annex 3: Conflict of interest (Col) in ERC peer review evaluations

<u>A disqualifying conflict of interest</u> exists if the panel chair, panel member, panel evaluator or referee:

- Was involved in the preparation of the proposal
- Stands to benefit directly should the proposal be accepted
- Has a close family relationship with any person representing an *applicant legal entity* in the proposal
- Is a director, trustee or partner of an applicant legal entity
- Is employed by one of the *applicant legal entities* in a proposal
- Was employed by one of the *applicant legal entities* in a proposal within the previous three years
- Is in any other situation that could compromise his or her ability to evaluate the proposal impartially

<u>A potential conflict of interest</u> may exist, even in cases not covered by the clear disqualifying conflicts indicated above, if the panel chair, panel member, panel evaluator or referee:

- Is already involved in a contract or research collaboration with an *applicant legal entity*, or had been so in the previous three years
- Is in any other situation that could cast doubt on his or her ability to evaluate the proposal impartially, or that could reasonably appear to do so in the eyes of an external third party

Annex 4: Sample of an Evaluation Report (ER)

ERC EVALUATION REPORT Stage 1

Call reference	ERC-2007-StG
Activity	ERC-SG
Funding scheme	ERC Starting Grant
Panel name	PE4 – Material and Chemical Sciences
Proposal No.	057432-1
Acronym	HolLit
Title	A novel method in holographic lithography at the nano-scale

PANEL MARKS

1. Principal Investigator: Potential to become an independent research leader <i>Quality of research output:</i> Has the Principal Investigator published in high quality peer reviewed journals or the equivalent? To what extent are these publications ground-breaking and demonstrative of independent creative thinking and capacity to go significantly beyond the state of the art? <i>Intellectual capacity and creativity:</i> To what extent does the Principal Investigator's record of research, collaborations, project conception, supervision of students and publications demonstrate that he/she is able to confront major research challenges in the field, and to initiate new productive lines of thinking?	4 / 5
2. Quality of the proposed research project Ground-breaking nature of the research: Does the proposed research address important challenges in the field(s) addressed? Does it have suitably ambitious objectives, which go substantially beyond the current state of the art (e.g. including trans-disciplinary developments and novel or unconventional approaches)? Potential impact: Does the research open new and important scientific, technological or scholarly horizons? Methodology: Is the outlined scientific approach (including the activities to be undertaken by the individual team members) feasible?	
Total mark	7.8 / 10
Has the proposal passed the threshold (8/10)?	No

PANEL COMMENTS

This evaluation report documents the final decision by the ERC evaluation panel. The panel bases its appraisal on the individual assessments by specific panel members and evaluators, whose comments are reproduced below.

The panel has reviewed these assessments and, while not necessarily subscribing to each and every opinion expressed, finds that in their totality they provide a fair and positive assessment of the proposal. The panel shares this impression that the proposal is generally of good quality.

However, in the context of the strong competition and the limited availability of funding, the proposal did not find sufficient support and endorsement from the panel members to be retained for the second stage of the evaluation.

The panel has therefore decided to award the final marks as given in the table above.

REVIEWER COMMENTS

REVIEWER

1. Principal Investigator: Potential to become an independent research leader

The PI demonstrates an excellent publication record and clearly shows significant potential.

2. Quality of the proposed research project

1

The proposed research addresses novel methods for the production of thin-film nano-scale structures by holographic lithography. The methods proposed are new and interesting. They are also well and accurately described. The project contains a certain element of risk but, if successful, could be groundbreaking in its implications for structuring of substrates for biological targets.

REVIEWER 2

1. Principal Investigator: Potential to become an independent research leader

This is a very good PI with impressive creative capability.

2. Quality of the proposed research project

The proposed science is new and well-described. The methodology is credible. The proposal addresses important challenges in the field.

REVIEWER 3

1. Principal Investigator: Potential to become an independent research leader

The PI has published / co-authored in high-quality journals, and the relevant publications are of high quality. The PI shows an extensive track record of collaborations and project conception, and does prove a capacity for new and creative thinking.

2. Quality of the proposed research project

The proposed work appears founded on a number of good quality ideas, with the potential for revolutionising the patterning of biomolecule immobilisation layers.